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808 Route de Lennik, B-1070 Brussels, Belgium
2Neuroscience Center, Department of Pharmacology, University of North Carolina, Chapel Hill, 105 Mason Farm Road,

North Carolina 27599-7250, USA

Roger Sperry proposed 40 years ago that topographic

neural connections are established through comp-

lementary expression of chemoaffinity labels in project-

ing neurons and their final targets. This led to the

identification of ephrins as key molecular cues control-

ling the topography of retinotectal projections. Recent

studies have revealed a surprising twist to this model,

shedding light on the developmental mechanisms pat-

terning the projections between the thalamus and the

cortex: ephrins, unexpectedly expressed in an inter-

mediate target, control the establishment of topogra-

phy of axonal projections between these two

structures. The same cues are re-used later to control

the mapping of thalamocortical projections within a

given cortical area, which strikingly illustrates how a

limited set of genes can contribute to generate several

levels of complexity of a neuronal network.

In the mammalian forebrain, the topographic projection of
each thalamic nucleus to a unique set of cortical areas gives
rise to the input specificity characterizing each sensory
modality [1]. The level of organization of thalamocortical
projections is far more complex than simple model systems
suchasretinotectalprojections.Most thalamicnucleiproject
to specific cortical areas, providing the first level of inter-
areal specificity of thalamocortical connections (Figure 1a).
A second level of organization is achieved within each area,
where projections from each individual thalamic nucleus
display a precise intra-areal topographic organization
(Figure 1b), allowing the generation of accurate spatial
representations within each cortical area.

Although the importance of this multi-level organiz-
ation of thalamic projections for normal cortical function
has long been appreciated, the developmentalmechanisms
underlying its precise patterning remain largely
unknown. In most species the inter-areal specificity of
thalamocortical projections is achieved prenatally,
whereas the intra-areal mapping of thalamocortical
axons occurs postnatally [2]. Numerous models have

been proposed to explain the patterning of thalamocortical
projections, including correlated neural activity, temporal
and/or spatial ordering of thalamic axon outgrowth, axon–
axon interactions between corticothalamic and thala-
mocortical axons (the ‘handshake’ hypothesis), comp-
lementary axon guidance labels in the thalamus and
cortex, as well as specific stop-signal cues in the
developing subplate [2–8].

Topographic organization of thalamocortical projections

Numerous anatomical studies have provided a detailed
description of the basic topographic rules of thalamocor-
tical projections in mammals [9–11]. Thalamic projections
are organized along the rostrocaudal and lateromedial
axes of the mammalian cerebral cortex. First, along the
rostrocaudal axis, axons originating from rostral thalamic
nuclei project to rostromedial cortical areas, whereas
caudal thalamic nuclei project caudolaterally in the cortex
(Figure 1c). As an example, rostral thalamic nuclei of the
anterior group and the ventrolateral nucleus (VL) project
to medial cingulate cortex and frontal cortex (M1),
respectively, whereas more caudal nuclei such as the
lateral geniculate nucleus project to the caudal cortical
pole, and target the primary visual area (V1). Second,
along the lateromedial axis, axons originating from lateral
thalamic nuclei tend to project caudally in the cortex,
whereas axons originating frommedial nuclei projectmore
rostrally (Figure 1c).

These surprisingly simple topological rules apply to
all primary thalamic nuclei and cortical areas, and to
most of the thalamus and cortex, even though there
are exceptions such as ‘associative’ thalamic nuclei that
send more diffuse projections to the cortex [12]. These
coordinate transformations lead to the basic pattern of
thalamocortical projections linking each thalamic
nucleus with a unique set of cortical areas in mammals
including rodents, carnivores and non-human primates
[11]. Remarkably, a recent study using a diffusion-
tensor imaging technique has demonstrated that this
topographic organization also applies to humans with a
surprising level of similarity with other mammals [13]
(Figure 1d).
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How is the inter-areal specificity of thalamocortical

projections initiated during development?

The developmental mechanisms underlying the gener-
ation of cortical areas and their topographic organization
remain poorly understood. In particular, it has remained
unclear if the instructive cues patterning the cortical
neuroepithelium reside primarily in extrinsic thalamic
afferents or are intrinsic to the developing cortex.

Intrinsic mechanisms

Recently there has been a flurry of in vivo evidence
indicating that the cortex contains intrinsic molecular

determinants patterning the molecular identity and the
position of cortical areas [5,8]. Importantly, graded
expression of morphogens and transcription factors in
the early embryonic cortex are required for the normal
patterning of thalamocortical projections [14–16]. In an
elegant series of experiments where in utero electropora-
tion-mediated gene transfer was used to produce an
ectopic posterior source of fibroblast growth factor 8
(FGF8), a morphogen involved in patterning the rostral
cortical primordium, a second barrel-field was produced in
the occipital pole [16]. Although these results await
confirmation that the ectopic barrel field actually receives

Figure 1. Thalamocortical connections display several levels of topographic specificity. (a) First, axons from individual thalamic nuclei project to a unique set of cortical

areas (inter-areal specificity). (b) Second, axons project topographically within a given cortical area (intra-areal specificity), schematized here for the somatosensory system:

axons from the lateral part of the primary somatosensory nucleus (the ventrobasal thalamic nucleus, VB; light blue) project to the medial part of the primary somatosensory

area or barrel field (S1; dark blue), whereas axons from the medial part of the VB (dark blue) project to the lateral part of S1 (light blue). (c) The two main axes of projection

defining the inter-areal topography of projections described in rodents, carnivores and non-human primates [9–11]. Numerous anatomical studies have provided a detailed

description of the basic topographic rules of thalamocortical projections in mammals. Thalamic projections are organized along the rostrocaudal and lateromedial axes of

the mammalian cerebral cortex. First, along the rostrocaudal axis, axons originating from rostral thalamic nuclei project to rostromedial cortical areas, whereas caudal thal-

amic nuclei project caudolaterally in the cortex (i). Second, along the lateromedial axis, axons originating from lateral thalamic nuclei tend to project caudally in the cortex,

whereas axons originating from medial nuclei project more rostrally (ii). This results in a basic topological organization where a rostromedial-to-caudolateral axis in the

thalamus is mapped to a rostrocaudal axis in the cortex. (d) Strikingly, the same topographic organization is preserved in humans. Modified, with permission, from Ref.

[13]. Abbreviations: A1, primary auditory area; LGN, lateral geniculate nucleus; M1, primary motor area; MGN, medial geniculate thalamic nucleus; V1, primary visual area;

VL, ventrolateral thalamic nucleus.
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the appropriate thalamic innervation by axons from the
ventrobasal (VB) complex (the primary somatosensory
thalamic nucleus), they strongly suggest that cortex-
derived cues play a role in patterning the inter-areal
specificity of thalamocortical projections (Figure 2a,b). In
fact, in vivo grafting experiments have already pointed to
the presence of cortical cues participating in the areal
specificity of thalamocortical projections [17,18]. For
example, when embryonic day (E)16 frontal cortex is
grafted ectopically into the occipital cortex of neonatal
rats, axons emerging from the VL and ventromedial (VM)
thalamic nuclei not only project to their normal target (the
frontal cortex) but also display a significant attraction
towards the posterior frontal graft [17,18] (Figure 2d). This
rewiring is found only for frontal-to-occipital grafts and
not for occipital-to-occipital grafts (Figure 2c). Taken
together, these results suggest that unidentified area-
specific cues can attract thalamic axons towards their
target cortical area in vivo.

Extra-cortical mechanisms

However, several studies recently provided evidence that
the areal specificity of thalamocortical projections is likely

to be initiated by extra-cortical cues. First, Garel et al.
have shown that knockout mice for the transcription
factors Ebf1 and Dlx1/2 display a defective topography of
thalamocortical projections [19]. Interestingly, these tran-
scription factors are expressed primarily in the ventral
telencephalon, through which axons travel to form the
internal capsule from the thalamus to the cortex and vice
versa (Figure 3a). These results suggested that cues
present in the ventral telencephalon could initiate
thalamocortical topography, but their interpretation is
limited by the fact that both Ebf1 and Dlx1/2 are
expressed not only in the ventral telencephalon but also
in the thalamus itself [20,21]. However, a second line of
evidence also argues for the importance of extra-cortical
cues in specifying the topography of thalamocortical
projections: the analysis of mice presenting a hypomorphic
allele of FGF8 revealed a prominent shift of the expression
of early molecular markers defining cortical territories
but, interestingly, does not produce a corresponding shift
in the early targeting of thalamocortical projections at
embryonic stages [22]. This result suggested for the first
time a partial independence between the mechanisms
controlling the cortical regionalization into specific areas
and themechanisms initiating the inter-areal specificity of
thalamic axons targeting.

By contrast, both thalamocortical projections and
cortical efferent projections are affected in knockout mice
for transcription factors expressed in the developing cortex
only (Tbr1), dorsal thalamus only (Gbx2), or both (Pax6,
Emx2) [23–25]. Notably, the reciprocal pathfinding defects
in these mutants are first found in the ventral telence-
phalon, through which axons travel to form the internal
capsule (Figure 3a) from the thalamus to the cortex, and
vice versa. Therefore, these results point to a potential role
of the ventral telencephalon in the patterning of thalamo-
cortical axons, although they would also be consistent with
the ‘handshake hypothesis’, according to which thalamic
axons might be patterned on their way to the cortex,
following axon–axon interactions with cortical efferents
axons in the internal capsule [2].

Taken together, these recent results suggested the
existence of (i) intermediate, extra-cortical guidance cues,
responsible for the initial specification of the topography of
thalamocortical projections to different cortical domains,
and (ii) intra-cortical cues, capable of attracting subsets of
thalamic axons towards their appropriate cortical target.
The idea of intermediate cues is not new, and many
anatomical studies have speculated about the role of
intermediate guidepost cells in the development of
thalamocortical projections in mouse, rat and ferret
[26–30]. However, the functional demonstration of the
importance of ventral telencephalic cues initiating the
topography of thalamocortical projections has emerged
only very recently from a study of the role of the
transcription factor neurogenin 2 (Ngn2) in the specifica-
tion of neuronal connectivity [31]. Neurogenin 2 is a basic
helix–loop–helix (bHLH) transcription factor expressed
in the rostral part of the developing thalamus [31,32] and
uniformly throughout the embryonic cortex [33]. Seibt
et al. have explored the role of Ngn2 in the specification of
the topography of projection of rostral thalamic neurons to

Figure 2. Thalamocortical patterning and intrinsic cortical cues. (a,b) Creating an

ectopic source of fibroblast growth factor 8 (eFGF8), a morphogen normally

expressed in the rostral organizer of the early cortical primordium (a), induces an

ectopic caudal barrel field [eS1 in (b)] [16]. Although these results await confir-

mation using tracing experiments to demonstrate that axons from the ventrobasal

thalamic nucleus (VB) actually project to the ectopic barrel-field [question mark in

(b)], they strongly suggest that cortex-derived cues can play a crucial role in pat-

terning the inter-areal specificity of thalamocortical projections. (c,d) Grafting

experiments demonstrate that a frontal-to-occipital (d), but not occipital-to-occipi-

tal (c) transplant is innervated by thalamic axons from the ventrolateral thalamic

nucleus (VL) [17,18], suggesting once more the existence of attractive area-specific

cues in the control of the final targeting of thalamocortical projections. Abbrevi-

ations: A1, primary auditory area; eM1, ectopic primary motor area; eS1, ectopic

primary somatosensory area; eV1, ectopic primary visual area; M1, primary motor

area; S1, primary somatosensory area or barrel field; V1, primary visual area.
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rostral cortical territories [31]. In this study, the
authors developed a new in vitro assay where the
projections of identified regions of the developing
thalamus expressing green fluorescent protein (GFP)
can be easily assessed while growing in wholemount
telencephalic vesicles. Using this ‘wholemount telence-
phalon’ assay, the authors demonstrated that axons
emerging from the anterior part of the dorsal thalamus
at E14.5 preferentially target the anterior part of the
ventral telencephalon, ultimately invading anterior
cortical territories (Figure 3c). Conversely, axons
emerging from progressively more caudal parts of the
thalamus grow preferentially in more caudal parts of
this intermediate target (Figure 3d). Importantly, the
analysis of the thalamocortical projections in Ngn2
knockout mice revealed a caudal shift in the topogra-
phy of projection of rostral thalamic nuclei detected
first in the ventral telencephalon and consequently in
the cortex (Figure 4c). The study of Seibt et al.
demonstrates for the first time: (i) that intermediate
topographic cues distributed along the rostrocaudal
axis of the ventral telencephalon are sufficient to
initiate the specificity of thalamic axon projections to
the appropriate cortical territories (Figure 3b), and
(ii) that the dorsal thalamus is heterogeneous along
its rostrocaudal axis with regard to the responsiveness
of its axons to these ventral telencephalic cues
(Figure 3c,d).

Identification of the extra-cortical topographic cues

initiating thalamocortical projection topography

Based on these results, identification of the guidance cues
involved in patterning of thalamocortical axons in the
ventral telencephalon became a crucial issue. A recent
study has succeeded in identifying some of these cues and
has implicated ephrin–Eph signaling in the early sorting
of thalamocortical axons in the ventral telencephalon [34].
The analysis of the expression pattern of Eph receptors in
the early developing mouse forebrain provided a first hint
that ephrins could be such sorting factors: three EphA
receptors (EphA3, EphA4 and EphA7) were found to be
expressed in high rostromedial to low caudolateral
gradients in the early (E13 to E15) dorsal thalamus [34].
These gradients are very different from those previously
described within individual nuclei of late embryonic (after
E15) and early postnatal thalamus [35–37], as they
encompass the boundaries between presumptive thalamic
nuclei, thereby providing a potential substrate for speci-
ficity between individual nuclei (Figure 4a,b). Are there
matching ligands in the telencephalon? Most strikingly,
ephrin-A5, which is a ligand for these three receptors, is
expressed in a complementary gradient (high caudal to low
rostral) in the mantle zone of the ventral telencephalon,
right at the zone of passage of thalamocortical axons in the
internal capsule (Figure 3a). Importantly, the overall
orientation of the ephrin–Eph gradients precisely
matches the responsiveness of thalamic axons observed

Figure 3. Thalamocortical patterning in the ventral telencephalon. (a) An oblique section of an embryonic day (E)17 mouse brain stained with a pan-axonal marker (neuro-

filament 165 kDa) reveals the outstanding array of millions of axons constituting the main input–output wiring to and from the cortex. Note that thalamocortical axons

leave the thalamus through a narrow passage (telencephalic peduncle) and subsequently have to redistribute through the entire rostrocaudal extent of the ventral telen-

cephalon to form the internal capsule, before invading the dorsal telencephalon (cortex). (b) Schematic view of a ‘flattened’ telencephalic vesicle illustrating the rostro-

caudal sorting of axons originating from different rostrocaudal levels of the dorsal thalamus, allowing their targeting to distinct cortical domains [31]. (c,d) The

‘telencephalic wholemount’ assay recapitulates the topography of thalamocortical axons projection in vitro: in this assay, axons emerging from the rostral part [DTR in (c)]

or the most caudal part [DTC in (d)] of E14.5 dorsal thalamus expressing green fluorescent protein (GFP) are co-cultured for three days in vitro with an isochronic telence-

phalic ‘wholemount’. This assay reveals that different rostrocaudal levels of the thalamus respond differently to intermediate cues present in the ventral telencephalon.

Scale bar for (c) and (d), 400 mm. Abbreviations: A1, primary auditory area; CGE, caudal part of the ganglionic eminence; LGE, lateral part of the ganglionic eminence; M1,

primary motor area; MGE, medial part of the ganglionic eminence; OB, olfactory bulb; S, septum; S1, primary somatosensory area or barrel field; V1, primary visual area.
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in vitro and in vivo [31]: rostromedial thalamic axons that
display high amounts of Eph receptors avoid the caudal
domain of the ventral telencephalon enriched in ephrins
(Figure 4a).

Dufour et al. took advantage of the thalamic–telence-
phalic co-culture assay to test for the requirement for
ephrins in guiding thalamic axons in the ventral tele-
ncephalon [34]. As predicted from the expression patterns,
addition of soluble inhibitors of ephrin As or EphA
receptors to the culture medium resulted in a loss of
topographic growth of rostral thalamic axons, and there-
fore in randomization of their pattern of invasion of the
ventral telencephalon. Similar, albeit milder, effects were
observed when using telencephalic wholemount prep-
arations isolated from ephrin-A5 mutant embryos,
suggesting that ephrin-A5 plays a role in patterning
thalamocortical projections in the ventral telencephalon,
alongwith other redundant cues remaining to be identified
[34] (Figure 4c).

Together with the expression data, these results show
that gradients of ephrins in the ventral telencephalon can

act as topographically specific repellents for rostral
thalamic axons, at least in vitro. Axon-tracing analyses
of double knockout mice for the genes encoding ephrin-A5
and EphA4 enabled the relevance of these findings to be
assessed in vivo [34]. Dufour and colleagues found
aberrant projections from the rostral thalamus displaying
a significant caudal shift in their projection, in both the
ventral and the dorsal telencephalon. Similarly, retro-
grade axon-tracing analyses of postnatal compound
mutant mice revealed strikingly aberrant projections
from the VL nucleus to the caudally located somatosensory
‘barrel’ cortex, whereas in wild-type mice, VL strictly
projects to rostrally located motor areas (Figure 4b).
Injections in both the primary motor and the primary
somatosensory cortex further confirmed that in the
ephrin-A5/EphA4 double knockout mice, unlike in wild-
type controls, the VL nucleus projects to both somatosen-
sory barrel cortex and motor cortex, thus adopting an
aberrantly divergent pattern of areal targeting (Figure 4d).
Importantly, this tracing analysis was performed on
postnatal day (P)15–P20 animals, providing direct

Figure 4. Model of sequential control of thalamocortical patterning. (a) Inter-areal thalamocortical topography is initiated at early embryonic stages in the ventral telence-

phalon. In wild-type mice, EphA receptors and the gene encoding neurogenin 2 (Ngn2) are expressed in the dorsal thalamus in a high rostromedial to low caudolateral gra-

dient (blue). Ephrin-A5 is expressed in a complementary gradient, high caudal to low rostral, in the ventral telencephalon (red). Thalamocortical axons expressing high

levels of EphA receptors from the rostromedial part of the thalamus (which gives rise to the ventrolateral thalamic nucleus, VL; axons in dark blue) travel through the rostral

part of the ventral telencephalon, which expresses low levels of the ephrin-A5 ligands, and consequently invade the rostral part of the cortex (such as the primary motor

area, M1). Axons from more caudolateral parts of the thalamus (which will become the ventrobasal thalamic nucleus, VB; axons in light blue) travel more caudally through

the ventral telencephalon and eventually connect to more caudal cortical domains (such as the primary somatosensory area or barrel field, S1). Unidentified cues present

in the dorsal telencephalon have been proposed to control the final areal targeting of thalamic axons in the dorsal telencephalon [7,16–18] (question mark; see also

Figure 2). (b) Intra-areal topographic mapping of thalamocortical projections in the somatosensory system is also controlled by the same ephrin and Eph genes but with

different spatial modalities. At postnatal ages, ephrin-A5 and EphA4 are expressed in complementary gradients in VB and S1, respectively. These gradients match one

another, given the known VB-to-S1 topography, with the medial part of VB (expressing high levels of EphA receptors; axons in dark blue) projecting to the lateral part of S1

(expressing low levels of ephrin-A5; light red), and with the lateral part of VB (expressing low levels of EphA receptors; axons in light blue) projecting to the medial part of

S1 (expressing high levels of ephrin-A5; dark red). (c,d) In the absence of appropriate ephrin–Eph signaling [in EphA4/ephrin-A5 double knockout (DKO) mice] or in the

absence of Ngn2 expression, rostromedial thalamocortical axons growing from the presumptive VL nucleus invade more caudal territories of the ventral telencephalon

during embryonic stages [arrow 1 in (c)], resulting in an aberrant shift of their projections to more caudal cortical areas such as S1 [unnumbered arrow in (d)]. In addition,

intra-areal mapping is also perturbed: axons from the medial VB send ectopic projections [arrow 2 in (d)] to medial domains of S1, although some topography is preserved,

suggesting compensatory mechanisms involving additional ephrins, Eph receptors or as-yet unidentified genes. Abbreviations: CGE, caudal ganglionic eminence; LGE,

lateral ganglionic eminence; MGE, medial ganglionic eminence; OB, olfactory bulb; S, septum.
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evidence that an early (embryonic) disruption of the
sorting of thalamic axons in the ventral telencephalon
can have a long-lasting influence on the mature pattern of
thalamic innervation of the cortex. It will be interesting to
determine whether this thalamocortical miswiring has
any behavioral consequences, given that both grafting and
re-wiring experiments have demonstrated a considerable
plasticity of thalamocortical connectivity [3].

Although this work clearly demonstrates that ephrins
in the ventral telencephalon play an instructive role in
topographic mapping of thalamocortical projections,
ephrins in the cortex have been proposed to control other
aspects of inter-areal thalamocortical specificity, such as
the targeting of specific thalamic nuclei to the limbic cortex
[35,36,38,39]. Future work using region-specific con-
ditional ephrin and/or Ephmutants should help determine
the relative contribution of intermediate versus cortical
ephrins in inter-areal mapping of thalamocortical
projections.

Never change awinning team: ephrin and Eph genes and

intra-areal mapping

Interestingly, the involvement of ephrin and Eph genes in
thalamocortical development is not restricted to the
specification of inter-areal targeting, as the very same
ephrin and Eph genes are involved later, in development of
the second level of organization of thalamocortical
connections: the intra-areal topographic map organiz-
ation, which allows the generation of accurate sensory
representations within a specific cortical area (Figure 4b).

Even though a large body of evidence points to the
importance of activity-dependent mechanisms in the
generation and plasticity of cortical maps [40–43], recent
work has suggested that activity-dependent mechanisms
might not be essential for generating the crude topography
of somatosensory and visual cortical maps, suggesting the
involvement of guidance cues in this process [4,44,45].
Given their involvement in the development of topo-
graphic maps elsewhere in the CNS [46–51], ephrin and
Eph genes were obvious candidates for controlling the
topography of intra-areal mapping. Expression studies
centered on the somatosensory system first revealed that
ephrin-A5 and its receptor EphA4 are expressed in
matching complementary gradients in the rodent primary
somatosensory cortex (S1) and thalamus (the VB nucleus)
at perinatal stages, which corresponds to the period of
somatosensory map formation [37]. Using an in vitro axon
guidance ‘stripe assay’, ephrin-A5 was shown to act as a
topographically-specific repellent for thalamocortical
axons from the medial VB, which display the highest
amount of EphA4 receptor [37]. Analysis of ephrin-A5
mutants revealed an intriguing topographic distortion of
the shape and size of the S1 map, consistent with a role in
the mapping of somatosensory thalamic axons, but failed
to show any disruption of the topographic, point-to-point
precision of the projection, suggesting that genetic
redundancy might be obscuring the full extent of the
role of ephrin and Eph genes in this system [37,52].
Consistent with this hypothesis, analysis of ephrin-A5/
EphA4 double knockout mice revealed a much more
severe defect of thalamocortical projections between VB

and S1 [34], where numerous axons from medial VB
project ectopically to more medial domains in S1,
thereby disrupting the normal point-to-point precision
of the system (Figure 4d). Together, these results
indicate that ephrin-A5 in the cortex acts as a graded
repulsive cue for thalamocortical axons expressing
graded levels of EphA receptors (including EphA4) to
generate a precise topographic somatosensory map.

Remaining questions: interplay of guidance cues and

activity?

Several questions remain concerning the cellular mech-
anisms of ephrin action in intra-areal mapping in vivo. Do
ephrins modulate axonal branching and/or pruning [53],
as they do in the retinotectal system [54], or do they rather
control the guidance of thalamocortical axons when they
invade the cortical plate? Analysis of the time-course of the
defects found in ephrin and/or Eph mutants should help
answer this question. The involvement of ephrins in
development of cortical maps also raises the question of
their relationship with activity-dependent mechanisms
that are crucial for refinement of such maps [40–43].
Given the expression of ephrins in cortical barrels at
postnatal stages [37], together with the recent implication
of B ephrin in NMDA receptor signaling and synaptic
plasticity in the adult hippocampus [55,56], it is tempting
to speculate that the same genes are re-used during the
postnatal activity-dependent refinement of cortical maps.
Similarly, because inhibition of neuronal activity inter-
feres with areal specificity of thalamocortical projections
[57], it would be most interesting to test the effects of
developmental patterns of activity on Eph and ephrin
expression and signaling.

Sequential model for the patterning of thalamocortical

projections

Historically, deciphering the mechanisms patterning
thalamocortical projections in mammals has been a
controversial issue. To reconcile some of the conflicting
experimental evidence presented in this review, we would
like to propose a simple model (Figure 4a,b) where the
precise topography of projection of thalamic axons emer-
ging from a given nucleus (e.g. VB) onto a unique cortical
area (e.g. S1) is specified sequentially through the
following steps:

(i) Extra-cortical cues, including ephrins, present in the
ventral telencephalon initiate the topographic guidance of
thalamic axons towards crudely defined cortical domains
(frontal, parietal, temporal and occipital) (Figure 4a).

(ii) Cortical cues, including unidentified area-specific
attractants (Figure 4a), play a role in the ultimate
selection that thalamic axons make to target the appro-
priate cortical area (e.g. S1 versus S2 within the parietal
domain).

(ii) Cortical ephrins, together with other presently
unidentified cues and activity-dependent mechanisms,
control the final intra-areal mapping of thalamic axons
within their target cortical area (S1) (Figure 4b).

In the frame of this model, obvious future challenges in
the field will be to identify (i) the transcription-dependent
and transcription-independent mechanisms specifying
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expression of the guidance cues present in the intermedi-
ate and terminal targets of thalamic axons, (ii) the
mechanisms controlling the differential responsiveness
of thalamocortical axons to these intermediate and
terminal target-derived cues, (iii) thenature of the guidance
cues, aside of ephrins, controlling thalamocortical pattern-
ing, and (iv) the timing and location of their cellular actions.
This will enable us to determine the relative importance of
eachof the steps involved, andhowtheyarticulatewitheach
other to generate thehierarchical complexity characterizing
thalamocortical connectivity.
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