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Summary
Coordination of membrane deformation and cytoskeletal dynamics lies at the heart of many biological processes critical for cell polarity,

motility and morphogenesis. We have recently shown that Slit-Robo GTPase-activating protein 2 (srGAP2) regulates neuronal
morphogenesis through the ability of its F-BAR domain to regulate membrane deformation and induce filopodia formation. Here, we
demonstrate that the F-BAR domains of two closely related family members, srGAP1 and srGAP3 [designated F-BAR(1) and F-

BAR(3), respectively] display significantly different membrane deformation properties in non-neuronal COS7 cells and in cortical
neurons. F-BAR(3) induces filopodia in both cell types, though less potently than F-BAR(2), whereas F-BAR(1) prevents filopodia
formation in cortical neurons and reduces plasma membrane dynamics. These three F-BAR domains can heterodimerize, and they act

synergistically towards filopodia induction in COS7 cells. As measured by fluorescence recovery after photobleaching, F-BAR(2)
displays faster molecular dynamics than F-BAR(3) and F-BAR(1) at the plasma membrane, which correlates well with its increased
potency to induce filopodia. We also show that the molecular dynamic properties of F-BAR(2) at the membrane are partially dependent

on F-Actin. Interestingly, acute phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] depletion in cells does not interfere with plasma
membrane localization of F-BAR(2), which is compatible with our result showing that F-BAR(2) binds to a broad range of negatively-
charged phospholipids present at the plasma membrane, including phosphatidylserine (PtdSer). Overall, our results provide novel
insights into the functional diversity of the membrane deformation properties of this subclass of F-BAR-domains required for cell

morphogenesis.
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Introduction
The plasma membrane and actin cytoskeleton work in concert to

create, maintain, and modify cell shape (Raucher et al., 2000;

Sheetz and Dai, 1996). The coordination of plasma membrane

deformation and actin polymerization is critical for cellular

processes including chemotaxis, endocytosis, polarity and

cytokinesis (Ford et al., 2002; Frost et al., 2007; Han et al., 2006;

Janetopoulos et al., 2005; Martin-Belmonte et al., 2007; Vallis et al.,

1999). The actin cytoskeleton can be linked to the plasma

membrane through a diverse array of actin-binding proteins

that interact directly with phosphoinositides, frequently

phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], present in

the inner leaflet of the plasma membrane, such as the Wiscott–

Aldrich syndrome protein (WASP) family proteins (Miki et al.,

1996; Oikawa et al., 2004), actin depolymerizing factor (ADF)/

cofilins (Zhao et al., 2010) and the small Rho-like GTPases

(Yoshida et al., 2009). Alternatively, this link to the actin

cytoskeleton can occur through scaffolding proteins that contain

specific phospholipid-binding motifs, such as pleckstrin homology

(PH) domains found in proteins such as phospholipase C (PLC),

dynamin (Flesch et al., 2005; Harlan et al., 1994; Vallis et al.,

1999), or Bin/amphiphysin/Rvs (BAR)-domain-containing proteins

(reviewed by Itoh and De Camilli, 2006; Tsujita et al., 2006). Over

the past decade, emerging evidence suggests that in many instances

F-actin dynamics is coupled to the function of membrane-

deforming proteins. This coupling plays an instructive role in the

localization and the type of membrane deformations observed in

cells, such as lamellipodia and filopodia protrusions during

endocytosis or phagocytosis (Doherty and McMahon, 2008; Itoh

and De Camilli, 2006; Martin-Belmonte et al., 2007).

Proteins of the BAR superfamily are recognized for their ability

to both sense and generate membrane curvature (Doherty and

McMahon, 2008). BAR domains are membrane-binding modules,

consisting of a series of three to five a-helices, that have a large

dimerization interface to create banana-shaped quaternary

structures. These homodimeric BAR domains bind cellular

membranes through electrostatic charge interaction between their

positively charged amino acids (arginine and lysine) and the

negatively charged phospholipids of the membrane, such as

PtdIns(4,5)P2 and phosphatidylserine (PtdSer) (Saarikangas et al.,

2009). BAR-domain-containing proteins often contain multiple

other domains, including the actin-binding domain WH2, GTPase-

activating protein (GAP) and guanine-nucleotide-exchange factor

(GEF) domains, and Src homology 3 (SH3) domains, leading to the

interplay between cellular membranes and the actin cytoskeleton.

The BAR superfamily has been segregated into subfamilies, based

on structural and functional data (Itoh and De Camilli, 2006).

N-BAR domains, such as those found in amphiphysin and
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endophilin, contain a N-terminal amphipathic helix that inserts into
the lipid bilayer, aiding in their membrane-deforming properties

(Masuda et al., 2006; Peter et al., 2004). BAR domains induce
membrane invaginations, and function in endocytosis. F-BAR

domains were recognized more recently through secondary
structure prediction of the congruence of a Fes-CIP4 homology
(FCH) domain and a coiled-coil domain in its C-terminal (Henne

et al., 2007; Itoh et al., 2005; Shimada et al., 2007; Tsujita et al.,
2006). Recently, several structures of F-BAR domains have been

solved, revealing that these have an elongated dimer structure with
more shallow curvature than the BAR domains (Shimada et al.,

2007; Wang et al., 2009; Yoshida et al., 2009). Like BAR proteins,
F-BAR-domain-containing proteins, such as formin-binding
protein 17 (FBP17) and FCH only 1 and 2 (FCHO1/2) induce

membrane invaginations and play a role in the endocytic process
(reviewed by Doherty and McMahon, 2008). A third class of

protein, inverse BAR (I-BAR)-domain-containing proteins such as
insulin receptor tyrosine kinase substrate p53 (IRSp53) and
missing-in-metastasis (MIM) induce membrane protrusions

instead of invaginations (Mattila et al., 2007; Suetsugu et al.,
2006; Yamagishi et al., 2004). However, this simple structure/

function dichotomy, whereby N-BAR, F-BAR and BAR domains
induce membrane invagination and tubulation, whereas I-BAR

domains induce filopodial protrusions, has been recently
challenged by results showing that the predicted F-BAR domain
of Slit-Robo GTPase activation protein 2 (srGAP2) (Guerrier

et al., 2009) and syndapins (Dharmalingam et al., 2009) can
induce filopodia-like membrane protrusion and, thereby, regulate

neuronal morphogenesis.

srGAP2 is a member of the srGAP family of proteins, which
consists of three other members: srGAP1, srGAP3 (also known as

WRP and Megap) and ArhGAP4 (which has been renamed
srGAP4 based on its domain organization and homology with

srGAP1–3; MGI 2159577). srGAP proteins all contain a
predicted N-terminal F-BAR domain, a central Rho-GAP

domain and a C-terminal SH3 domain (Carlson et al., 2011;
Wong et al., 2001). The family was named based on the fact that
the C-terminal SH3 domain binds the intracellular domain of the

Roundabout receptor (Robo), the receptor for the axon guidance
cue, Slit (Wong et al., 2001). Although each family member

contains a GAP domain, there are differences in GTPase
hydrolysis activity between the proteins. The RhoGAP domain
of srGAP1 has been shown to promote GTP hydrolysis of Cdc42

and RhoA, depending on the concentration of Slit1 (Wong et al.,
2001), whereas the GAP domains of srGAP2 and srGAP3 are

both specific for Rac1 (Guerrier et al., 2009; Soderling et al.,
2002), and ArhGAP4 can act on both Cdc42 and Rac1 (Vogt

et al., 2007). All four family members display spatially and
temporally distinct patterns of expression in the central nervous
system (Bacon et al., 2009; Foletta et al., 2002) and have been

shown to regulate cell migration and neuronal morphology in
mammalian cells (Guerrier et al., 2009; Soderling et al., 2002;

Vogt et al., 2007; Wong et al., 2001; Yang et al., 2006), a
function that seems evolutionary conserved in invertebrates

(Zaidel-Bar et al., 2010). srGAP3 has been implicated in a severe
form of mental retardation, the 3p2 syndrome, giving srGAP3
the alternate name of mental-disorder associated GAP protein

(MEGAP) (Endris et al., 2002). srGAP2 has also recently
been implicated in a severe neurodevelopmental syndrome

causing early infantile epileptic encephalopathy and profound
psychomotor delay (Saitsu et al., 2011). These human genetic

data strongly suggest that srGAP2 and srGAP3 play a crucial role
during human brain development.

We recently found that the function of srGAP2 in both
neuronal migration and morphogenesis is largely mediated
through the ability of its F-BAR domain to induce filopodia
(Guerrier et al., 2009). However, the functional properties of

the predicted F-BAR domains of the remaining srGAP family
members have yet to be determined; furthermore, the molecular
mechanisms underlying their function during filopodia formation

are only starting to be examined in detail (Carlson and Soderling,
2009).

In the present study, we focused our analysis on the function of
the F-BAR domains present in srGAP1, srGAP2 and srGAP3.
Our results reveal a surprising degree of diversity in the ability of
these three closely related F-BAR domains to induce filopodia-

like membrane protrusions in non-neuronal and neuronal cells.
Our study provides novel insights into the molecular mechanisms
underlying the membrane deformation properties of this subclass

of F-BAR domains during cell morphogenesis.

Results
The srGAP family of proteins, through their respective
F-BAR domains, exhibit differing abilities to induce
filopodia in non-neuronal cells
Recently, the F-BAR domain of srGAP2 [designated F-BAR(2)]

has been implicated in the regulation of neuronal migration and
morphogenesis owing to its ability to induce filopodia and neurite
branching (Guerrier et al., 2009). srGAP2 is one of four

srGAP family proteins, although ArhGAP4/srGAP4 diverges in
sequence from the rest of the family (supplementary material Fig.
S1A,B); therefore, we restricted our analysis to the F-BAR

domains of srGAP1, srGAP2 and srGAP3. Although the F-BAR
domains of srGAP1, srGAP2 and srGAP3 share ,85% amino-
acid identity (supplementary material Fig. S1C,D), the molecular

properties of the F-BAR domains of srGAP1 and srGAP3
[designated F-BAR(1) and F-BAR(3), respectively] are still
poorly understood. To first compare the functions of these closely
related proteins, we transfected plasmids expressing full-length

srGAPs, or their respective F-BAR domains, fused at their C-
terminal end to enhanced green fluorescent protein (EGFP), into
COS7 cells (Fig. 1A–H0). Full-length srGAP1 (Fig. 1B–B0,I,J)

and srGAP3 (Fig. 1D–D0,I,J) induce more filopodia than EGFP
alone (Fig. 1A–A0,I,J), but are both significantly less potent than
full-length srGAP2 (Fig. 1C–C0,I,J). A similar trend is found

with expression of each respective F-BAR domain (Fig. 1E–G0).
Therefore, both srGAP2 and its F-BAR(2) domain are more
potent at inducing filopodia than srGAP3 and srGAP1, or their F-

BAR domains (Fig. 1I,J). Additionally, both srGAP2 and F-
BAR(2) induced significantly longer filopodia than the other
srGAP family members or their F-BAR domains (Fig. 1K). There
is no significant difference in filopodia number or length between

each srGAP protein and its respective F-BAR domain. These data
illustrate that despite such closely related sequences, the
members of the srGAP family of proteins are functionally

distinct with regard to their ability to induce filopodia.

srGAP proteins can interact through their F-BAR domains
It has previously been shown that BAR, N-BAR, F-BAR and I-

BAR domains homodimerize to form curved structures necessary
for membrane deformation and tubulation (Henne et al., 2007;
Shimada et al., 2007; Wang et al., 2009; Frost et al., 2008). We

Functional diversity of F-BAR domains 3391
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have previously shown, using biochemical and biophysical
approaches, that the F-BAR domain of srGAP2 forms

homodimers (Guerrier et al., 2009). Based on their high degree
of conservation, we hypothesized that the F-BAR domains of the
srGAP family proteins have the ability to heterodimerize as well
as homodimerize. To test for interaction between F-BAR

domains, combinations of myc-tagged and GFP-tagged srGAPs
were co-transfected into COS7 cells and immunoprecipitated
with an anti-GFP antibody (Fig. 2A). Western blots were probed

for myc, revealing interactions between all three paired
combinations of full-length srGAP proteins. This interaction
occurred through the respective F-BAR domains, and not through

indirect interaction through SH3 domain binding, as indicated by
co-immunoprecipitation of RFP-tagged F-BAR(2) with GFP-
tagged F-BAR(1)/(3) (Fig. 2B). This result suggests that all three
F-BAR domains are structurally conserved and are capable of

heterodimerization or oligomerization.

The F-BAR domains of different srGAP proteins localize to
distinct regions of filopodia

In order to test for cooperative function of these three different F-
BAR domains, GFP-tagged F-BAR(1) or F-BAR(3) were co-

transfected into COS7 cells along with mRFP-tagged F-BAR(2)
(Fig. 3A–C0). Surprisingly, co-expression of either F-BAR(1)
(Fig. 3A–A0) or F-BAR(3) (Fig. 3C–C0) with F-BAR(2) led to a

synergistic effect towards filopodia induction when compared
with the equivalent expression of F-BAR(2)–GFP and
F-BAR(2)–mRFP (Fig. 3B–B0; quantified in Fig. 3D). Live-

imaging of co-transfected COS7 cells revealed differences in
filopodial dynamics in cells expressing different F-BAR

combinations: filopodia containing GFP- and RFP-tagged F-
BAR(2) or the combination of F-BAR(2)–RFP and F-BAR(3)–
GFP extended faster than filopodia containing F-BAR(2)–RFP
and F-BAR(1)–GFP (Fig. 3E).

We noticed that when co-expressed, these F-BAR domains had
a distinct distribution along the filopodia. In order to quantify F-
BAR distribution within the filopodia of COS7 cells, a line was

drawn from the base to the tip of the filopodia to measure the
fluorescence intensity of both the GFP- and mRFP-tagged
signals. This quantification reveals significant differences in F-

BAR distribution into the filopodia (Fig. 3F–H, quantified in
Fig. 3I). In both instances, F-BAR(2) extended to the tip of the
filopodia, whereas the expression of F-BAR(1) or F-BAR(3)
strongly decreased before reaching the tip. These results suggest

(1) that the F-BAR domains of srGAP1–3 display synergistic
effects towards filopodia induction and filopodia growth, and (2)
that these three F-BAR domains have distinct intra-filopodial

localization when co-expressed. These data, combined with the
interaction data, further suggest that the three F-BAR domains
can form distinct complexes inside a filopodium to intricately

regulate the induction and maintenance of membrane protrusions.

Molecular dynamics of the F-BAR domains of srGAP1-3

Canonical F-BAR domain homodimers can form end-to-end
oligomers that adopt a ‘coiled’ quaternary structure, which
interacts with the plasma membrane (Shimada et al., 2007).

Fig. 1. srGAP2 induces significantly more

filopodia than srGAP1 or srGAP3. (A–H0) COS7

cells expressing EGFP only (A9–A0), EGFP-tagged

full-length srGAP1 (B–B0), srGAP2 (C–C0) or

srGAP3 (D–D0), or their respective F-BAR domains

(E–H0) were counterstained with phalloidin for F-

actin (A9–H9) in red. (I–J) Quantification of the

effects described in A–H0 (n.25 cells). (K) srGAP2

and its F-BAR domain [F-BAR(2)] induce

significantly longer filopodia than full-length

srGAP1, srGAP3, or their respective F-BAR domains

(n.200 filopodia; P,0.0001). Quantifications were

taken from at least three independent experiments and

analyzed using a non-parametric Mann–Whitney test.

*P,0.05 (0.0193), **P,0.01 (0.0068), ***P,0.001;

black asterisks indicate comparison with EGFP and

red asterisks indicate comparison with srGAP2–EGFP

or F-BAR(2)–EGFP.

Journal of Cell Science 125 (14)3392
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These ‘coils’ are also stabilized by interactions between the sides

of the F-BAR homodimers occurring between adjacent turns of

the ‘coil’ in proteins such as FBP17 (Frost et al., 2008). The exact

structural mechanism underlying I-BAR-mediated membrane

tubulation in filopodia is currently unknown, but has been shown

to require the ability of I-BAR domains to interact with the

negatively-charged lipids via the convex surface, as well as

insertion of an amphipathic helix into the inner leaflet of the

plasma membrane (Saarikangas et al., 2009). Additionally, the I-

BAR domains of IRSp53 (Millard et al., 2005), IRTKS (Millard

et al., 2007) and MIM (Lee et al., 2007) have been suggested to

directly bind to actin. We hypothesized that part of the functional

differences observed between the ability of the three srGAP F-

BAR domains to induce filopodia might be due to differences

in their subcellular trafficking properties along the plasma

membrane or the actin cytoskeleton, which can be assessed

by quantifying their molecular dynamics using fluorescence

recovery after photobleaching (FRAP).

Following photobleaching, the fluorescence recovery (FR)

plateaus at a certain percentage of the initial fluorescence, which

represents the fraction of the protein that is mobile (mobile

fraction). We also measured the time required to recover 50% of

the fluorescence of the mobile fraction (t1/2), which indicates the

speed of the mobile fraction (i.e. how quickly F-BAR domains

assemble and traffic along the plasma membrane). We made

three types of comparisons for both FR and t1/2: (1) comparing all

three F-BAR domains and the PH domain of PLCd1, (2)

comparing the molecular dynamics of these domains in filopodia

versus along the plasma membrane, and (3) comparing the
molecular dynamics of these domains in control cells versus

cells treated with cytochalasin D in order to induce F-actin
depolymerization (supplementary material Fig. S2).

These quantitative analyses reveal that F-BAR(2) displays a
significantly higher mobile fraction and shorter t1/2 than F-

BAR(1), in filopodia (Fig. 4B,C) and at the plasma membrane
(Fig. 4D,E), whereas F-BAR(3) can behave in a similar manner to
both of the other F-BAR domains, depending on the context. In

filopodia, the mobile fraction of F-BAR(3) matches that of F-
BAR(2) in untreated cells, whereas the mobile fraction of F-
BAR(3) matches that of F-BAR(1) at the peripheral membrane;

however, depolymerization of the actin cytoskeleton with
cytochalasin D reduces the mobile fraction coefficient of F-
BAR(3) to that of F-BAR(1) in filopodia, and raises the mobile
fraction coefficient of F-BAR(3) at the membrane. Additionally,

these experiments revealed that the speed of F-BAR mobility relies
on an intact F-actin cytoskeleton, given that depolymerization of
F-actin by cytochalasin D treatment significantly increased t1/2 for

all three F-BAR domains, both in filopodia and at the plasma
membrane (Fig. 4C,E). Given the direct interaction of actin with
the plasma membrane (Raucher et al., 2000), it is possible that the

effects of cytochalasin D treatment on F-BAR domain mobility at
the membrane are due to indirect effects on lipid diffusion rates. To
rule out this possibility, we performed the same FRAP experiments

with the PH domain of PLCd1, which specifically binds
PtdIns(4,5)P2. This analysis revealed two interesting differences
in the molecular dynamics of F-BAR and PH domains. First,
the PH domain displays significantly faster molecular dynamics

(both increased mobile fraction and decreased t1/2). Second,
cytochalasin-D-mediated actin depolymerization did not affect the
mobile fraction coefficient or the t1/2 of the PH domain either

inside filopodia or at the plasma membrane (Fig. 4). These results
reveal two important new features regarding the molecular
dynamics of these F-BAR domains in filopodia: (1) the

molecular dynamics correlate well with the efficiency of each F-
BAR domain to induce filopodia [i.e. F-BAR(2).F-BAR(3).F-
BAR(1)], and (2) the rate of intracellular mobility of the F-BAR
domains is partially dependent on F-actin.

Lipid specificity varies between the F-BARs of srGAP
proteins

All BAR-like domains, including F-BAR and I-BAR domains,
bind to the plasma membrane through electrostatic interactions to
negatively charged phospholipids, such as PtdIns(4,5)P2 (Itoh

et al., 2005; Mattila et al., 2007; Peter et al., 2004; Saarikangas
et al., 2009), and/or through the presence of an amphipatic helix
(wedge loop) directly inserting into the phospholipid bilayer
(Saarikangas et al., 2009; Wang et al., 2009). Membrane-binding

proteins can be removed from the membrane in a variety of ways,
such as exposure to salt solutions (e.g. weaker interactions can
be disrupted by lower salt concentrations). Different lipid

compositions can also be separated using different detergent
solutions (London and Brown, 2000). Western blots of lysates
from cells expressing F-BAR(1), F-BAR(2) and F-BAR(3) would

reveal any differing affinities for Triton-X-insoluble lipids and
proteins. To test this, cells were lysed in a two-step process, first
with a low-stringency Triton-X-containing buffer, then the

supernatant was removed, and the insoluble pellet was
subjected to a higher-stringency modified RIPA buffer and
sonicated. Molecular components of the Triton-X-insoluble

Fig. 2. srGAP proteins interact through their F-BAR domains.

(A) Combinations of EGFP- and myc-tagged full-length srGAP proteins were

coexpressed in COS7 cells, immunoprecipiated (IP) with anti-GFP and

immunoblotted (IB) with anti-myc antibodies. Single-transfected control

lysates demonstrate the specificity of the rabbit anti-EGFP and mouse anti-

myc antibodies. Every combination of the three srGAP proteins was able to

co-immunoprecipitate. (B) EGFP-tagged F-BAR(1)–F-BAR(3) were

coexpressed with mRFP-tagged F-BAR(2) in COS7 cells. Cells lysates were

incubated and immunoprecipitated with either rabbit anti-IgG control

antibody or rabbit anti-EGFP antibody, and immunoblotted for either rabbit

anti-RFP antibody or mouse anti-GFP antibody. All three EGFP-tagged F-

BAR domains co-immunoprecipitated with F-BAR(2)–mRFP.

Functional diversity of F-BAR domains 3393
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fraction contain lipids found in lipid rafts, which are highly

enriched for cholesterols and sphingolipids (London and

Brown, 2000), as well as phosphatidylethanolamine (PtdEth),

phosphatidylcholine (PtdChl), phosphatidylserine (PtdSer) and

phosphatidylinositol (PtdIns) (Rouquette-Jazdanian et al., 2002).

F-BAR(1) and F-BAR(3) have a 32-fold and 7.4-fold higher

affinity for the Triton-X-insoluble fraction, respectively, whereas

F-BAR(2) is only present at 0.6-fold that found in the Triton-X-

soluble fraction (Fig. 5A).

Recently, Carlson and colleagues have reported that F-BAR(3)

relies on PtdIns(4,5)P2 for its membrane binding (Carlson et al.,

2011). Membrane localization was reduced with the coexpression

of the PtdIns(4,5)P2-specific 5-phosphatase, Inp54p; however,

constitutive Inp54p expression has been shown to negatively

effect cell morphology and health, causing cell rounding and a

loss of protrusions (Raucher et al., 2000). Although recombinant

F-BAR(2) domain binds PtdIns(4,5)P2, it also binds several

negatively charged phosphoinositides, as well as PtdSer (Fig. 5B;

supplementary material Fig. S3).

Given the high degree of similarity between F-BAR(2) and F-

BAR(3), and that PtdIns(4,5)P2 is the most abundant form of

phosphorylated PtdIns at the plasma membrane of many

mammalian cells (Mitchell et al., 1986; Tran et al., 1993), we

next tested whether PtdIns(4,5)P2 is required for the maintenance

of F-BAR localization at the plasma membrane in situ by

employing an acute rapamycin-inducible method of depleting

Fig. 3. Synergy between F-BAR domains towards filopodia induction. (A–C0) Coexpression of F-BAR(1)–GFP and F-BAR(2)–mRFP (A–A0), F-BAR(2)–

GFP and F-BAR(2)–mRFP (B–B0), and FBAR(2)–mRFP and F-BAR(3)–GFP (C–C0) in COS7 cells. (D) Quantification of filopodia density in F-BAR-transfected

COS7 cells. Co-transfection of F-BAR(1)–GFP or F-BAR(3)–GFP with F-BAR(2)–mRFP do not differ in their filopodia densities; however, both combinations

induce significantly higher filopodia densities than any single F-BAR alone [n.25 cells; * and N indicate P,0.005, with * depicting significance between F-

BAR(1) and F-BAR(2), and N marking significance between F-BAR(2) and F-BAR(3)]. (E) Quantification of filopodial dynamics based on the path travelled by

the filopodia tips (n.186 filopodia; ***P,0.0001). (F–I) Intrafilopodia expression of each F-BAR varies in co-transfected COS7 cells, whereas F-BAR(1)–GFP

extinguishes before F-BAR(2)–RFP (F), F-BAR(2)–GFP and F-BAR(2)–RFP both extend to the filopodial tip (G), and F-BAR(2)–RFP extends beyond F-

BAR(3)–GFP (H); quantified in (I). n550 for F-BAR(1) and F-BAR(2); n575 for F-BAR(2) and F-BAR(2); n583 for F-BAR(2) and F-BAR(3); ***P,0.0001,

red asterisks indicate comparison with F-BAR(2), and blue asterisks indicate comparison with F-BAR(3). Quantifications were taken from at least three

independent experiments and analyzed using a Mann–Whitney non-parametric test.

Journal of Cell Science 125 (14)3394
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PtdIns(4,5)P2 from the membrane (Varnai et al., 2006). This

method allows for temporal control of PtdIns(4,5)P2 depletion

and can avoid some of the consequences of constitutive

PtdIns(4,5)P2 depletion (Raucher et al., 2000). Briefly, addition

of rapamycin induces binding of the membrane-targeted FKBP-

rapamycin-binding (FRB) domain to the FK506-binding protein

(FKBP) domain, thereby recruiting Venus-FKBP-Inp54p, a

PtdIns(4,5)P2-specific 5-phosphatase, to the plasma membrane

where it dephosphorylates PtdIns(4,5)P2 into PtdIns(4)P (Varnai

et al., 2006) (Fig. 5C–U). Prior to rapamycin treatment, the FRB

domain (Fig. 5D,J,P) and PH domain of PLDd1 (Fig. 5F),

F-BAR(2) (Fig. 5L) and F-BAR(3) (Fig. 5R) are localized to

the plasma membrane, while the FKBP12-Inp54p fusion

(Fig. 5E,K,Q) is in the cytoplasm. Upon rapamycin treatment,
the FKBP12 domain binds the FRB domain, translocating the

phosphatase to the membrane (Fig. 5H,N,T). The depletion of
PtdIns(4,5)P2 results in the translocation of the PtdIns(4,5)P2

binding partner, the PH domain of PLCd1, from the plasma
membrane to the cytoplasm (Fig. 5I). PtdIns(4,5)P2 depletion

alone does not remove F-BAR(2) from the plasma membrane
(Fig. 5O), as it remains bound after rapamycin treatment. In
contrast, the levels of F-BAR(3) are significantly reduced at the

plasma membrane following rapamycin treatment (Fig. 5U).
These results strongly argue that F-BAR(2) and F-BAR(3)
display a different requirement for PtdIns(4,5)P2 for their

membrane localization, and in particular, that F-BAR(2)
relies on other negatively-charged phosphoinositides or other
mechanisms for its membrane localization.

F-BAR(1) constrains cellular protrusions in cortical
neurons, whereas F-BAR(2) and F-BAR(3) induce
protrusions

We have previously shown that the activation of full-length
srGAP2 varies between COS7 cells and cortical neurons
(Guerrier et al., 2009); therefore, we wanted to compare the

activities of these three F-BAR domains in cortical neurons.
Mouse embryos were harvested and subjected to ex utero
electroporation following injection of plasmid DNA into the
lateral ventricles at embryonic day 15.5 (E15.5) (for details, see

Hand et al., 2005). Dorsal telencephalic progenitors were
immediately dissociated and plated. At 24 hours in vitro (24
hiv), these immature neurons display high levels of lamelipodial

and filopodial dynamics (Stage 1), processes that precede and are
required for neurite initiation (Guerrier et al., 2009; Dent et al.,
2007). The activities of the F-BAR domains of srGAPs diverge

between COS7 cells and primary cortical neurons, most
strikingly for srGAP1. Neurons electroporated with each of the
three F-BAR domains contain more filopodia than control GFP-

containing neurons (Fig. 6A–D, quantified in Fig. 6E); however,
F-BAR(1) localizes very distinctly to areas of the plasma
membrane that lack protrusions (arrowhead in Fig. 6B),
whereas F-BAR(2) and F-BAR(3) localize to sites of filopodial

and lamellipodial protrusions (Fig. 6C,D). Quantification reveals
that areas of the plasma membrane where F-BAR(1) is found
contains significantly less filopodia than areas of the plasma

membrane that lack F-BAR(1), and vice versa for F-BAR(2) and
FBAR(3) (Fig. 6F). The trend is the same for F-BAR(1) and F-
BAR(2) in lamellipodial protrusions, but reversed for F-BAR(3)

(Fig. 6G).

To confirm these static analyses, we performed time-lapse
confocal imaging of GFP-tagged F-BAR domains co-
electroporated with an F-actin probe (LifeAct-mRFPruby);

(Riedl et al., 2008) into E15.5 cortical neuronal progenitors,
then plated and cultured the neurons for 24 hiv (Fig. 7;
supplementary material Movies 1–3). As we hypothesized, F-

BAR(1) inhibits membrane protrusions and/or stabilizes the
plasma membrane. Strikingly, in neurons expressing F-BAR(1)–
EGFP, filopodia-like F-actin-rich protrusions were only observed

where F-BAR(1) is not present (Fig. 7B–F; supplementary
material Movie 1). F-BAR(2) coats the majority of the
membrane, and induces the extension and retraction of

neuronal F-actin-rich filopodia (Fig. 7J–R; supplementary
material Movie 2); however, little to no ruffling activity
occurred in the F-BAR(2)-coated membrane. F-BAR(3) appears

Fig. 4. The three F-BAR domains of srGAP proteins differ in their

subcellular molecular dynamics. (A) FRAP analysis of EGFP-tagged F-

BAR(1) (i), F-BAR(2) (ii), F-BAR(3) (iii), and PH domain of PLCd1 (iv) in

filopodia protrusions. The same analyses were performed at the peripheral

membrane of the cell. (B–E) Quantification of the mobile fraction coefficient

(B,D) and half-time of recovery (t1/2; C,E) in filopodial protrusions (B–C) and

at the peripheral plasma membrane (D–E). Cells were either imaged as

untreated controls, or treated with cytochalasin-D for depolymerization of the

actin cytoskeleton. Significance compared to untreated controls are marked

by asterisks (*), and significance to cytochalasin-treated samples is marked

with a caret (ˆ). Significance is color-coded with black for F-BAR(1), red for

F-BAR(2) and blue for F-BAR(3). n for each condition is marked below the

bottom graph for filopodial and membrane, and is the same for mobile

fraction and t1/2 at each location. */
ˆP,0.05, **/

ˆˆP,0.005, ***/
ˆˆˆP,0.0005.
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to have an intermediate phenotype between F-BAR(1) and

F-BAR(2) in neurons. It induces a comparable number of

filopodia to F-BAR(2), yet as seen for F-BAR(1), it is more often

found in areas that do not contain lamellipodia (Fig. 5D–F).

Analysis of membrane dynamics reveals both filopodia

protrusions and ruffling activity coinciding with F-BAR(3)

expression (Fig. 7S–AA; supplementary material Movie 3).

Taken together, these results demonstrate that in immature

cortical neurons, F-BAR(1) restricts membrane protrusions and

dynamics, whereas F-BAR(2) and F-BAR(3) domains induce

filopodia protrusions through their membrane-deformation

properties.

Discussion
The functional characterization of BAR-domain-containing

proteins has expanded quite rapidly over the past few years.

Recently, Guerrier and colleagues found that the F-BAR domain

of srGAP2 shares the functional properties of I-BAR domain

activity (Guerrier et al., 2009), such as those contained in IRSp53

and missing in metastasis (MIM) (Mattila et al., 2007; Millard

et al., 2007; Saarikangas et al., 2009) by inducing membrane

protrusions, rather than making invaginations as observed with

canonical F-BAR proteins (Frost et al., 2007; Itoh et al., 2005).

Recent reports (Carlson et al., 2011) and reviews (Heath and

Insall, 2008) describing the subclasses of F-BAR-domain-

containing proteins categorize srGAP family members into one

functionally uniform subgroup; however, our work demonstrates

that there are discrete roles and intricate differences between each

srGAP family member.

Although the F-BAR domains of the srGAP family are all able

to induce filopodia-like membrane protrusions to a greater extent

than in control conditions, the degree to which these three

domains induce such structures greatly varies. F-BAR(2) is much

more potent at inducing protrusions than either F-BAR(1) or F-

BAR(3) in COS7 cells, and F-BAR(1) actively restricts

protrusive activity in cortical neurons. It is interesting to note

Fig. 5. F-BAR(2) binds multiple negatively-charged phospholipids. (A) Western blot depicting F-BARs found in two separate fractions, a Triton-X-soluble

and Triton-X-insoluble fraction. The level of F-BAR(1) expression is 32-fold higher in the Triton-X-insoluble fraction, whereas the level of F-BAR(2) is slightly

reduced in this fraction (0.6-fold) and F-BAR(3) is more highly expressed in the insoluble fraction (7.4-fold). (B) Binding of F-BAR(2) to immobilized

phospholipids on nitrocellulose membrane (PIP Strip, Molecular Probes). Membrane was incubated with recombinant F-BAR(2) (amino acids 1–480) and

subsequently immunoblotted with an antibody to srGAP2. LPA, lysophosphatidic acid; LPC, lysophosphatidylcholine; PE, phosphatidylethanolamine; PC,

phosphatidylcholine; SIP, sphingosine 1-phosphate; PA, phosphatidic acid; PS, phosphatidylserine. (C) Quantification of pixel intensity of membrane to

cytoplasmic localization pre- and post-rapamycin treatment (n515–16). (D–U) Representative images of HEK293 cells triple-transfected with CFP–FRB, Venus–

FKBP12–Inp54p, and the RFP-PH domain of PLCd1 (D–I), F-BAR(2)–RFP (J–O), or F-BAR(3)–RFP (P–U) both pre- (C–E, I–K, P–R) and post-rapamycin

treatment (F–H, L–N, S–U). Asterisks denote the difference between ratios of the pre- and post-rapamycin membrane localization to cytoplasmic localization in

the same condition. *P,0.05, ***P,0.001.
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that COS7 cells do not express endogenous srGAP1, 2 or 3

proteins (supplementary material Fig. S1E), whereas cortical

neurons express all three srGAP proteins in various combinations

throughout development in vitro and in vivo (supplementary

material Fig. S1G) (Bacon et al., 2009). Bacon et al.

demonstrated that mRNA encoding srGAP3 appears to be the

most highly expressed among srGAPs in the cortex at early

developmental time points, followed closely by that of srGAP2,

whereas srGAP1 is not significantly expressed until postnatal

ages (Bacon et al., 2009). We find similar expression levels in

dissociated cortical neurons (supplementary material Fig. S1G).

Interestingly, srGAP2 protein increases within a few days in

culture, whereas srGAP3 remains relatively stable. However,

immunohistochemical analysis of srGAP2 and srGAP3 in cortical

Fig. 6. F-BAR domains of srGAP proteins differ in their ability to induce filopodia in cortical neurons. (A–D) E15.5 cortical neurons expressing EGFP (A)

or EGFP-tagged F-BAR(1) (B), F-BAR(2) (C), or F-BAR(3) (D) were cultured for 24 hours in vitro (hiv) after ex vivo electroporation, fixed and stained with the

F-actin marker phalloidin (red). (E) Cells with any of the three F-BARs contain more filopodia than GFP alone, although F-BAR(2) and F-BAR(3) induce

significantly more filopodia than F-BAR(1). (F,G) Quantifications of the percentage of plasma membrane in filopodia (F) or lamellipodia (G) that is coated or

uncoated with F-BAR protein. Quantifications were performed on at least three independent cultures and analyzed using Mann-Whitney test (**P,0.01,

***P,0.001; n.20 neurons). Black asterisks illustrate comparison against F-BAR(1), whereas red asterisks indicate difference from F-BAR(2).

Fig. 7. Real-time imaging of membrane and F-actin

dynamics induced by F-BAR domains in cortical neurons.

E15.5 cortical neurons expressing the F-actin probe LifeAct-

mRFPruby (red) and GFP-tagged F-BAR(1) (A–I), F-BAR(2)

(J–R), or F-BAR(3) (S–AA) following ex vivo electroporation

and 24 hours in dissociated culture. GFP and mRuby channels

are shown separately for ease of visualization (supplementary

material Movies 1–3). Images from time series taken at 0, 148

and 296 seconds are pseudocolored in red, green and blue,

respectively. The white overlay in the merge panel indicates

limited spatial dynamics throughout the movie. (A) Whole-cell

image of a cortical neuron coexpressing F-BAR(1)–EGFP and

LifeAct-mRFPruby. (B–I) F-BAR(1)-coated membrane shows

little to no spatial dynamics (B–E); however, dynamic neuritic

protrusions can be visualized with LifeAct-mRFPruby at sites of

‘breaks’ in F-BAR(1)–GFP coated plasma membrane (F–I).

(J) Whole-cell image of F-BAR(2)–EGFP and LifeAct-

mRFPruby co-expressing neuron. (K–R) F-BAR(2)-coated

membrane displays rapid extension and retraction of filopodia

protrusions (K–N), although F-actin dynamics are largely

confined to the area within the F-BAR(2)-coated membrane

(O–R). (S) Whole-cell image of a cortical neuron coexpressing

F-BAR(3)–EGFP and LifeAct-mRFPruby. (T–AA) F-BAR(3)–

GFP-coated membrane presents numerous sites of filopodia-like

membrane dynamics.
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neurons reveals no distinguishable difference in endogenous

subcellular localization, with both proteins producing punctate

staining throughout the cell body and protrusions (data not

shown) (Guerrier et al., 2009; Endris et al., 2011). Our data argue

that, upon its exogenous expression, the F-BAR domain might

interact with endogenous forms of these srGAP proteins, possibly

explaining the different effects of these proteins when expressed

in COS7 cells vs. cortical neurons. Given the high expression of

endogenous srGAP3 in cortical neurons, this interaction could

particularly explain the differences seen with F-BAR(3). In

addition to differential expression of srGAP proteins between

COS7 cells and neurons, cortical neurons display extensive

filopodia dynamics during neurite initiation (Dent et al., 2007) as

well as during spine formation (Yoshihara et al., 2009), whereas

COS7 cells rarely display spontaneous filopodia formation

(Fig. 1A–A0). These differences in native cytoskeleton

composition and dynamics, as well as variance of membrane

and cytoskeletal-related proteins, might also help to explain the

differences we observed between F-BAR activities in these two

cell types.

Recent analysis of srGAP3 (also called WAVE-1 related

protein, WRP, and MEGAP) has shown that its F-BAR domain is

involved in filopodia induction preceding spine morphogenesis

(Carlson et al., 2011). However, those authors suggested that the

F-BAR domain of srGAP3 is targeted to the plasma membrane

through its ability to bind to PtdIns(4,5)P2 and PtdIns(3,4,5)P3.

Our analysis shows a strikingly different pattern of phospholipid

binding for the F-BAR domain of srGAP2, which seems to bind

very broadly to negatively charged phospholipids, including six

out of seven existing phosphoinositides, as well as PtdSer. In

their analysis of the binding of F-BAR(3) to the membrane,

Carlson et al. (Carlson et al., 2011) used a constitutively active

PtdIns(4,5)P2 phosphatase, Inp54p, to reduce PtdIns(4,5)P2

levels at the plasma membrane; however, constitutive Inp54p

expression leads to changes in cell shape due to PtdIns(4,5)P2-

mediated alterations in the actin cytoskeleton from reduced

interaction between the actin network and the plasma membrane

(Raucher et al., 2000). Given the close interaction of many BAR-

containing proteins with the cytoskeleton as well as with the

plasma membrane, we wanted to look at the effects of acute

PtdIns(4,5)P2 depletion on F-BAR membrane-binding. Our

results demonstrate that acute depletion of PtdIns(4,5)P2 has no

effect on the targeting of F-BAR(2) to the plasma membrane,

however it does affect F-BAR(3) localization. We did not find

coexpression alone to be effective enough to reduce localization

of F-BAR(3) (data not shown); however, the difference between

the ability to induce translocation upon acute, inducible

PtdIns(4,5)P2 depletion is clearly compatible with the lack of

binding specificity of F-BAR(2) to PtdIns(4,5)P2, and suggests

that the F-BAR domain of srGAP2 could bind to the plasma

membrane through other negatively charged phospholipids,

including PtdSer. An interesting possibility exists that these

proteins need the electrostatic charge interaction primarily for

initial binding, and subsequently localization occurs through

hydrophic interaction such as the insertion of an amphipathic

helix seen in N-BAR (Itoh and De Camilli, 2006) and I-BAR

domains (Saarikangas et al., 2009). While the F-BAR domain of

srGAP3 does translocate after PtdIns(4,5)P2 depletion, the effect

is less specific and more variable than with the PH domain of

PLCd1. This variation, as well as the lack of translocation with F-

BAR(2), could be accounted for by the broad lipid specificity, a

physical insertion into the plasma membrane, or both.

Alternatively, F-BARs of the srGAP family could be tuned to

differentially bind to a specific range of membrane curvature

found at the plasma membrane, as previously shown for other

BAR and F-BAR domains (Frost et al., 2007; Zhao et al., 2011).
This could further explain the differential localization between

the srGAP F-BAR domains within filopodial protrusions, where

curvature varies along the base, neck and tip of a filopodium.

The molecular mechanisms underlying the differences in

phospholipid-binding specificity between F-BAR(2) and F-

BAR(3) are currently unknown, but might involve differences
in electrostatic positive charge distribution (lysine and arginine

residues) at the surface of these two F-BAR dimers; however, the

structures of these F-BAR domains have yet to be solved,

therefore, further experiments will be necessary to identify the

precise molecular basis for these differences. The molecular basis

for self-assembly of this class of F-BAR domains is currently
unknown, however shorter F-BAR domains present in proteins

such as FBP17, have been shown to interact through both ‘end-

to-end’ interactions as well as ‘side-to-side’ interactions of

individual dimers. These oligomers form a corkscrew-like helix

that binds and tubulates membranes (Frost et al., 2008; Shimada

et al., 2007; Wang et al., 2009). Based on combinations of in
vitro cryo-EM, structural and bio-informatics modeling analysis,

it was found that F-BAR and I-BAR proteins are able to form

molecular assemblies inducing specific membrane topologies,

ranging from membrane tubules to shallow membrane curvature

(Frost et al., 2008; Wang et al., 2009), and even to planar

membrane sheets (Pykäläinen et al., 2011). However, the
mechanisms underlying F-BAR domain assembly in cells and

the way they control membrane deformation and dynamics is

currently unknown, and warrants further investigation. Our data

show for the first time that the F-BAR domains of srGAP proteins

have different functions and dynamics in both cell lines and

primary neurons. These F-BAR domains display different lipid-
binding properties, as well as a clear F-actin-dependence for their

intracellular mobility (supplementary material Fig. S4). Our data

raise the possibility that F-BAR(1) and F-BAR(3), which have

lower mobile fraction coefficients than F-BAR(2) in various

conditions, could have a stronger association with the plasma

membrane and therefore aid in membrane stabilization as

opposed to membrane deformation. Our time-lapse data in
neurons support this hypothesis by revealing that there is a

reduced number of membrane protrusions where F-BAR(1) is

present at the plasma membrane, as well as reduced filopodial

dynamics in transfected COS7 cells. Our results also point to the

fact that the F-BAR domains of three srGAP proteins are able to

interact and possibly heterodimerize, and that these three F-BAR
domains act synergistically towards filopodia formation (Figs 2,

3; supplementary material Fig. S4). Overall, our results point to

the unique function of the srGAP family proteins, through their

F-BAR domains, in inducing and regulating filopodia-like

protrusions in neuronal and non-neuronal cells because of their

ability to control membrane deformation.

Materials and Methods
Plasmid constructs and sequence alignments

All srGAP constructs were cloned into a modified pCIG2 vector (Guerrier et al.,
2009) with the IRES removed for GFP-, RFP- or Myc-tagged C-terminal fusions.
Lifeact-pRuby was subcloned from EGFP-N1 into the modified pCIG2 construct,
using XhoI/NotI cut sites. srGAP constructs contain the following proteins and
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F-BAR truncations: human full-length srGAP1 (GenBank number NP_065813.1),
srGAP2 (GenBank number NP_056141.2), srGAP3 (GenBank number
NP_001028289.1), or F-BAR truncations F-BAR(1) (aa 1–516), F-BAR(2) (aa
1–501), F-BAR(3) (aa 1–492). Constructs for rapamycin-induced PtdIns(4,5)P2

depletion, with the exception of F-BAR(2)–RFP and F-BAR(3)–RFP described
above, were obtained from Tamas Balla (NICHD, Bethesda, MD) and Tobias
Meyer (Stanford, Stanford, CA) and cloned into pcDNA3.1 by Sam Snider (Zylka
Lab, UNC-Chapel Hill, NC). Protein phylogenetic tree prediction was created
using GeneBee TreeTop (http://www.genebee.msu.su/). The percentage of amino
acid conservation was determined with the NCBI Blast tool. Sequence alignments
were created using MultAlign (Corpet, 1988).

Cell culture

COS7 and HEK293 cells were plated onto poly-D-lysine-coated coverslips (Sigma
P0899) and maintained in Dulbecco’s Modified Eagle’s Medium (DMEM, Sigma
D6046) supplemented with 10% FBS (Foundation 900-108) and 16 Penicillin-
Streptomycin (Pen/Strep, Gibco 15070-063). Cell culture transfections were
performed 24 hours post plating, using Lipofectamine 2000 (Invitrogen 11668)
according to the manufacturer’s instructions. Fixed cells were treated with 4%
paraformaldehyde for 20 minutes, washed in PBS, permeabilized in 0.05% Triton
X-100 in PBS, washed, and then blocked in 5% BSA (Sigma A6003) for 20
minutes. COS7 cells were then incubated with primary antibody (anti-myc
antibody 1:500, Cell Signaling 2276; anti-GFP antibody 1:1000, Aves GFP-1020;
or anti-RFP antibody 1:1000, Invitrogen R10367) in PBS with 0.2% BSA and 10%
normal goat serum overnight at 4 C̊. Cells were washed in PBS and incubated with
secondary antibody [goat anti-chicken Alexa-Fluor-488 (1:1000, Invitrogen
A11039), goat anti-rabbit Alexa-Fluor-546 (1:1000, Invitrogen A11035), Alexa-
Fluor-546–phalloidin (1:200, Invitrogen A22283), Alexa-Fluor-647 phalloidin
(1:200, Invitrogen A22287), or DRAQ5 (1:10,000, Fisher NC9165029)] for 2
hours at room temperature. Finally, cells were then washed in PBS and mounted
with Biomedia mounting media (Fisher NC9034735).

Primary neuronal cultures were plated onto poly-D-lysine- or laminin-coated
coverslips (Sigma L2020) and maintained for 24 hours in Neurobasal-A
(Invitrogen 10888-022) supplemented with 16 Pen/Strep, L-glutamine (Gibco
25030-081), 16 B-27 (Gibco 17504044) and N2 (Gemini 400-163). Cortical
neurons were transfected prior to dissociation via ex vivo electroporation at E15.5,
as previously described (Hand et al., 2005). Neurons were fixed for 10 minutes at
24 hours after plating, using a 1% glutaraldehyde solution in PHEM buffer
(pH 6.9; 60 mM PIPES, 25 mM HEPES, 10 mM EGTA, and 2 mM MgCl2) to
preserve cytoskeletal integrity (Kaech et al., 1997). The rest of the staining
protocol is the same as used for COS7 cells, with the primary antibodies anti-GFP
(Invitrogen A11122) and anti-tubulin (Covance MMS-435P-100), and secondary
antibodies goat anti-rabbit Alexa-Fluor-488 (Invitrogen 11034), Alexa-Fluor-546
phalloidin and goat anti-mouse Alexa-Fluor-647 (Invitrogen A21235).

To determine filopodia number, fixed cells were imaged using LEICA TCS SL
confocal microscope, with a 636/1.4NA oil immersion objective. Magnified
images (62) were taken of representative cells from each construct. Images were
then imported to NIH ImageJ. Using the line tool, a perimeter was drawn around
the cells. The presence of filopodia was determined by counting the number of
consecutive pixels on the line drawn around the cell perimeter and normalized by
dividing the total number of filopodia by the cell perimeter (filopodia per mm).
Protein extension into filopodia was determined using NIH ImageJ software to
draw a line from the base to the tip of the filopodium, and measure fluorescence
intensity of each fluorescence channel.

Live-cell imaging

Live cell imaging of COS7 cells, HEK293 cells, and neuronal cultures were imaged
using Leica TCS confocal microscope with either a 206objective, or a 636/1.4NA
oil immersion objective, with a 37 C̊ stage warmer. COS7 cells were imaged in their
culture medium at 12-second intervals. The path of filopodial tips was traced over
time using NIH ImageJ software to obtain quantification of filopodial dynamics
(mm/minute). Culture medium was removed from HEK cells prior to imaging, and
replaced with 37 C̊ Hank’s Balanced Salt Solution (HBSS, Gibco 14025)
supplemented with 0.24% HEPES (Fisher BP310), 0.2% dextrose (Fisher D16)
and 0.1% BSA (Sigma A6003). Images were taken before and after addition of 1 mM
rapamycin (Calbiochem 553212) in supplemented HBSS solution was added to the
cells. Membrane to cytoplasm ratio in pre- and post-ramapycin-treated cells was
measured in HEK cells expressing all three constructs, using NIH ImageJ software.
Neuronal cultures were imaged in their culture medium, at 12-second intervals.

Live-cell imaging for FRAP experiments was performed with a PLAPO 606/1.42
objective (Olympus) on an Olympus FV1000 confocal microscope, equipped with a
plastic cage incubator (Presicion Plastics, MA) maintained at 37 C̊ with 5% CO2 and
60% humidity to prevent media evaporation. To measure fast fluorescence dynamics
in single filopodia images of 2566256 pixels were taken at 366 zoom with pixel
dwell time of 2 ms. A rectangular shape bleach area of a fixed width (,0.4 mm) was
drawn across the filopodia or a membrane region, 20 prebleach frames acquired with
a 488 excitation laser (multiline Argon laser) attenuated to 0.7% to minimize

photobleaching of the sample, followed by 300 ms bleaching with the same laser
operated at full power. The recovery was then measured at the speed of
,0.5 seconds/frame with the 488 laser, operated at the same 0.7% transmission as
for the prebleaching acquisition. For cytochalasin-D treatments, COS7 cells were
transfected with F-BAR constructs and cultured for 48 hours. Cells were then treated
with 200 mM cytochalasin D (Sigma C2873) for 1 hour prior to imaging. To observe
the presence of F-actin, cells were fixed post-imaging and stained with phalloidin as
previously stated. Fluorescence intensity curve from FRAP imaging was then
analyzed with the Igor Pro 6.12A (Wavemetrics) using the K_FRAPcalc v9
procedure developed by Kota Miura (EMBL).

Biochemistry

Western blots were run from COS7 cells transfected with either tagged F-BAR, or
full-length srGAP constructs, treated with Ripa Buffer (50 mM Tris, pH 7.4, 1%
Triton X-100, 0.25% sodium deoxycholate, 0.1% SDS, 1 mM EDTA, 150 mM
NaCl, 16Complete Protease Inhibitor Cocktail (Roche), 1 mM PMSF) at 24 hours
post transfection. Lysates were run through 4–12% NuPage gels (Invitrogen
NP0321) and transferred onto a PVDF membrane (Amersham RPN303F), which
was then blocked with 5% dry milk (Carnation) in TBS-T. Primary antibodies
(anti-srGAP1 1:1000, Abcam ab57504; anti-srGAP2 A2 and anti-srGAP3 A1
1:1000; gifts from Wei-Lin Jin lab, University of Shangai; anti-GFP 1:1000,
Invitrogen A11122; and anti-Actin 1:5000, Millipore MAB 1501) and secondary
antibodies (donkey anti-rabbit IRDye 800, Li-cor Biosciences 926-32213; or
donkey anti-mouse IRDye 680, Licor Biosciences 926-32222) were incubated in
3% dry milk in TBS-T.

Co-immunoprecipitations were obtained from double-transfected cells and
treated with co-immunoprecipitation buffer (50 mM Tris-HCl pH 7.4, 15 mM
EGTA, 100 mM NaCl, 0.1% Triton X-100, protease inhibitor, 1 mM DTT and
1 mM PMSF) 24 hours after transfection. Incubations and washes were performed
in the same buffer. 10% of the lysis volume was collected prior to antibody
incubations for input controls. The rest of the co-immunoprecipitation lysis was
subjected to the immunoprecipitation antibody (1 mg anti-GFP, Invitrogen
A11122, or 1 mg anti-IgG control antibody) bound to Protein A/G beads (Santa
Cruz 2003), washed and dissociated with SDS loading buffer at 95 C̊. The two-step
lysis buffer, to analyze Triton-X-soluble and Triton-X-insoluble fractions, was first
subjected to the co-immunoprecipitation buffer described above. The lysates were
then centrifuged at 25,200 g for 20 minutes. The supernatent was removed and
used for the Triton-X-soluble fraction. The insoluble pellet was then subjected to a
modified RIPA buffer (50 mM Tris-HCl pH 7.4, 0.5% sodium deoxycholate, 0.2%
SDS, 1 mM EDTA, 150 mM NaCl, 1mM PMSF and 16 protease inhibitor),
sonicated briefly and spun at 25,200 g for 10 minutes. The supernatent was
removed and used for the Triton-X-insoluble fraction. Western blots were run as
described before, using anti-GFP, anti-RFP or anti-Myc primary antibodies, and
anti-mouse and anti-rabbit antibodies described above. Western blots were imaged
on the LI-COR Odyssey infrared imaging system.

Immobilized lipids were spotted onto PIP Strip membranes (Molecular Probes
P23750) and treated according to manufacturer’s instructions. Briefly, the PIP
Strip membrane was blocked with 3% BSA/TBS-T (Sigma A6003), incubated with
0.5 mg/ml purified F-BAR(2) (aa 1–480; purified by the laboratory of Holger
Sondermann, Cornell University, Ithaca, NY) in 3% BSA/TBS-T for 1 hour at
room temperature, washed in TBS-T, incubated with primary antibody (anti-
srGAP2 A1 1:1000; a gift from Wei Lin Jin, Shanghai Univ., China), washed in
TBS-T, incubated with secondary antibody (goat anti-rabbit IRDye800), washed,
and developed using the LI-COR Odyssey infrared imaging system.
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L. M. and Fütterer, K. (2005). Structural basis of filopodia formation induced by the

IRSp53/MIM homology domain of human IRSp53. EMBO J. 24, 240-250.

Millard, T. H., Dawson, J. and Machesky, L. M. (2007). Characterisation of IRTKS, a

novel IRSp53/MIM family actin regulator with distinct filament bundling properties.
J. Cell Sci. 120, 1663-1672.

Mitchell, K. T., Ferrell, J. E., Jr and Huestis, W. H. (1986). Separation of
phosphoinositides and other phospholipids by two-dimensional thin-layer chromato-

graphy. Anal. Biochem. 158, 447-453.

Oikawa, T., Yamaguchi, H., Itoh, T., Kato, M., Ijuin, T., Yamazaki, D., Suetsugu, S.

and Takenawa, T. (2004). PtdIns(3,4,5)P3 binding is necessary for WAVE2-induced

formation of lamellipodia. Nat. Cell Biol. 6, 420-426.

Peter, B. J., Kent, H. M., Mills, I. G., Vallis, Y., Butler, P. J., Evans, P. R. and

McMahon, H. T. (2004). BAR domains as sensors of membrane curvature: the

amphiphysin BAR structure. Science 303, 495-499.

Pykäläinen, A., Boczkowska, M., Zhao, H., Saarikangas, J., Rebowski, G., Jansen,

M., Hakanen, J., Koskela, E. V., Peränen, J., Vihinen, H. et al. (2011). Pinkbar is
an epithelial-specific BAR domain protein that generates planar membrane structures.

Nat. Struct. Mol. Biol. 18, 902-907.

Raucher, D., Stauffer, T., Chen, W., Shen, K., Guo, S., York, J. D., Sheetz, M. P.

and Meyer, T. (2000). Phosphatidylinositol 4,5-bisphosphate functions as a second

messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100, 221-
228.

Riedl, J., A. H., Kessenbrock, K., Yu, J. H., Neukirchen, D., Bista, M., Bradke, F.,

Jenne, D., Holak, T. A., Werb, Z. et al. (2008). Lifeact: a versatile marker to
visualize F-actin. Nat. Methods 5, 605-607.

Rouquette-Jazdanian, A. K., Pelassy, C., Breittmayer, J.-P., Cousin, J.-L. and

Aussel, C. (2002). Metabolic labelling of membrane microdomains/rafts in Jurkat

cells indicates the presence of glycerophospholipids implicated in signal transduction
by the CD3 T-cell receptor. Biochem. J. 363, 645-655.
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